TURKSHEAD \& MATHEMATICS (Part 2 of 2)
©Charles Hamel. 2007 November - Vitry-sur-Seine

Quick summary :

ROTATION (pure) : Points move around the centre of mass with a linear speed proportional to the distance they are from this centre which is itself at rest (its radius $=0$).
Points diametrically opposite move in opposite directions.
The direction of linear move makes a right angle with the radius on which the point is placed. All the points belonging (PP included!) to the circle rotate by a same angle, but their linear speed is a function of their distance from the centre AND from the point of contact. Speed of Tracing Point is varying depending on where it is, being minimum toward the point of contact and maximum when diametrically opposite to this point of contact.

TRANSLATION (pure) : all the points belonging to the RC move in the same direction and with the same linear speed as its centre of mass does.

ROLLING (a mix of the above two motions) : the point of contact is "instantaneously" at rest and behave as an "instantaneous centre of rotation". The centre of the RC is then moving at a speed proportional to the radii (on the line : point of contact - moving point) and to the angle that is swept by it. This goes for any point along the diameter or its continuation (PP holding arm eventually)

Reminder note :
If an observer of the 'rolling' moves at the speed that the centre of the circle does, following the same direction, then there is no translation that he can see, there is only a rotation to be observed. A marker fixed on the valve of the bicycle wheel will then be seen as making a circle. If the observer is immobile and the circle is rolling then there is translation *and* rotation to be seen :
Drift (translation) + rotation = trochoïd. The choice of the frame of reference is extremely important. Since Galileo we know motion is "relative".

A particular 'family', the 3 LEAD THK one: Why in the $3^{*} \mathrm{~L} \mathrm{n}$ *B group (n and 3 do not share any prime factor) bights may be added to an existing THK (not one bight only, that is impossible) without having to add any LEAD as you must do in the more than 3 LEAD group for which you have add to LEAD to add to BIGHT and vice versa?

Picture 1 shows what exist BUT ALAS DESCRIBING IS NOT EXPLAINING.
When in an existing 3L THK, by "crossing the bights", a supplementary CUSP (crossing) is created between 2 pre-existing ones then inescapably 2 empty spaces are created through which the Wend has to pass transforming the so called BIGHT it comes from into a LEAD going on to expand/enlarge the structure.

Picture 1

IF ANCHORED SIDE BY SIDE AT EACH OF THEIR EXTREMITIES THE TWO LINE EITHER HAVE ZERO CROSSING OR HAVE AN EVEN NUMBER OF THEM : $2,4,6 \ldots$ ODD NUMBER OF CROSSING CANNOT EXIST IN THIS CONFIGURATION

Fig. 9

INSTEAD OF 1 THERE ARE NOW 4 BIGHTS AFTER THE TWO "EMPTY BLUE SPACES" WERE CROSSED BY THE WEnd
Fig. 10

Fig. 11

In fact ONE LEAD is then added!

Look at it like that:
making the "BIGHT crossing", so creating 2
"additional spaces" or "holes", indeed creates a
small segment of $\mathbf{2}$ LEAD THK included in smooth continuity in the original $\mathbf{3}$ LEAD THK?

Following the BIGHT addition threading in the Wend STRAND add in fact 1 LEAD (and 1 BIGHT) to the 2 LEAD segment to get a "coherent homogeneous, continuous" 3 LEAD all over.

While there is good reason (speed in the curve, rebroussement) to differentiate CUSP there is, I think, no real good reason, except Ashley's arbitrary choice to differentiate BIGHT.

What has been labelled BIGHT is a rather undifferentiated part of a LEAD (contrary to what the crossing at the cusp is = quite a special point). BIGHT sole particularity is to be situated at the frontier, at the border, so it is easily seen ; the tree that hides the forest as they say in France !
The very same segment lying at the frontier is counted twice: once as a LEAD, once as a BIGHT. Not what I readily accept as "intellectual strictness".

That is essentially because BIGHT don't really exist (only CUSP) but are basically of LEAD essence that you can cross the BIGHT ILEAD in a 3L. You cannot physically do that in a more than 3L. Crossing the BIGHT is crossing 2 LEAD in fact ; you can do that only if there is no intercalated LEAD between them making an obstacle.
Using CUSP instead of BIGHT immediately allows to perceive what is really happening there.

Using the CUSP would have avoided the faulty logic of counting the very same segment under two different headings.

Be as it may this iconoclast thinks there is a snowball's chance in hell, of ever seeing this bit of theology, most sorry...beg your pardon, nomenclature be modified.

It is probably best now to read again part ONE

FAST AND DIRTY RECIPE

RFIGCD or (RFred) gives the NUMBER OF BIGHT (ROTATIONS of RC relative to the FC) ("red" stands for reduced)

RR/GCD or (RRred) gives the NUMBER OF REVOLUTION (LCM / RF gives that number too)
(RF/GCD) + (RR/ GCD) for EPI,
(RF/GCD) - (RR/GCD) for HYPO gives the NUMBER
OF LEAD, that is the number of rotations of the PP
Arm, so of RC, relative to the coordinate system.
Numerical example :
$\mathbf{R F}=\mathbf{6 0} \quad \mathrm{RR}=\mathbf{3 5} \quad \mathrm{GCD}=5$
so RFred $=60 / 5=12 \quad$ RRred $=35 / 5=7$
$60=2 * 2 * 3 * 5=12 * 5 \quad 35=5 * 7$
LCM (least common multiple $=2$ * 2 * 3 * 5 * $7=420$ or
$60 * 7=35 * 12=420$)
Hence circles ratio (RFred / RRred) = $12 / 7$
7 REVOLUTIONS to re-enter the curve
12 BIGHTS (12 ROTATIONS of RC relative to FC)
$12+7=19$ LEAD, respectively $12-7=5$ LEAD During each REVOLUTION, for each BIGHT laid, a fraction of $L E A D$ is laid, plus (or minus) one LEAD.

Number of $L E A D$ will be drawn in full only if PP is beyond a certain length .

EXPLANATION OF FAST AND DIRTY

RF / RR ($60 / 35$) or RFred / RRred ($12 / 7$ e.g) is the number of RC perimeter (a full ROTATION) unrolled on the FC perimeter during one REVOLUTION of RC around FC

For the curve to re-enter, or close on itself, there must be enough REVOLUTION to generate an integer number of unrolled RC perimeters : the length of arc used on RC must be equal to the length of arc used on FC. Number of REVOLUTION $=$ LCM / RF

Let Number of REVOLUTION be NR and number of RC ROTATION relative to FC be nr To get the integer for re-entry you must have :

```
RF * NR = RR * nr (60 * 7 = 35 * 12 = LMC)
RF IRR = nr / NR (60 / 35=12 / 7)
```

here 12 * NR $=7$ * nr . It is plain to see that NR must be equal to $z^{*} 7$ and nr to $z^{*} 12$; in the numerical example $12 *\left(z^{*} 7\right)=7 *(z * 12)$ Hence for $\mathrm{z}=1$ NR = RRred and $\mathrm{nr}=$ RFred

- NR and nr are integers sharing no common prime factor, they can be said to be relatively prime. - nr circumferences of rolling circle will equal NR circumference of the fixed circle. (equality of arcs)
- There are nr CUSP in the complete curve.

Let us see now the RC rotations, the PP Arm rotations too, relative to coordinate system.

The centre of RC travels along a deferent circle of radius $R F+R R$ in the case of EPI and RF - RR in the case of HYPO (that is using |values|, if using "signed" values formula is simply RF + RR) To get the number of Arm ROTATION (LEAD laid) per REVOLUTION we divide by RR.

EPI case
$(\mathrm{RF}+\mathrm{RR}) / \mathrm{RR}=(\mathrm{RFred}+\mathrm{RR}$ red $) / \mathrm{RRred}=$ (RFred / RRred) + 1 (angles move in the same direction, same SIGN)
HYPO case
(RF - RR) / RR = (RFred - RRred) / RRred = (RFred / RRred) - 1 (angles move in opposite directions, different SIGN)

RFred + RRred or RFred - RRred depending on the case is the total Number of LEADS

Numerical example
RFred $=12$ [ROTATIONS] RRred $=7$ [REVOLUTIONS]
$(12+7) / 7$ respectively $(12-7) / 7$
19/7 respectively $5 / 7$
The number of LEADS laid per revolution is :
19/7 = 2.7142 respectively $5 / 7=0.7142$

Another view of those 12 BIGHT THK is:
$(12+7) / 7=(12 / 7)+1 \quad$ EPI case
$(12-7) / 7=(12 / 7)-1 \quad$ HYPO case
$(12 / 7)+1$; respectively $(12 / 7)-1$
$(1.7142)+1$; respectively (1.7142) - 1
Each ROTATION of RC relative to coordinate lays one more or one less LEAD than BIGHT were laid in
the same REVOLUTION. $\quad(12 \mathrm{~B}+7=19 \mathrm{~L}$ respectively $12 \mathrm{~B}-7=5 \mathrm{~L}$)
Radius of ROTATION is RR, radius of REVOLUTION is $R F+R R$ (respectively $R F-R R$)

So the impossibility of $L=B$ in a single strand THK, strand equivalent to the single continuous line traced out, and the so called common divisor law have always been plain to see, in-built, in those formulas very much older than the grandfather's grandfather of both ASHLEY and TABER.

Another way of understanding why $L=B$ is impossible with a single strand THK is :
$\mathrm{L}=(\mathrm{RF}+\mathrm{RR}) / \mathrm{GCD}$ or $\mathrm{L}=(\mathrm{RFred}+\mathrm{RR}$ red $)$
$B=(R F / G C D)=R F r e d$
L = B imply RFred + RRred = RFred
Hence RRred = ZERO
RR = ZERO is clearly impossible if a drawing is to exist.
Rolling circle would be an immaterial point on the circumference of the Fixed circle.

EPITROCHOÏD

Initially A, M, T are at the same place $(A=M=T)$ ANGLES (t) and Theta are 'linked', linked as in not independent one from the other.
$R F / R R=N \quad(N>1$ or $R R<R F) \quad R F=N * R R$ (you may see RR as being "one unity" worth) $R F *(t)=N * R R *(t)=R R *$ (Theta) (measures of arcs and equality of arcs)
Angles (t) and (Theta) are of identical sign (angles move in the same direction - PP rotates ANTICLOCKwise so its absolute value will be signed "plus")
$($ Theta $)=+N^{*}(\mathrm{t})=+(\mathrm{RF} / \mathrm{RR}) *(\mathrm{t})$
$X=R R(N+1) * \cos (t)-P P * \cos [(N+1) *(t)]$
$X=R R((R F / R R)+1) \cos (t)-P P * \cos [((R F /$ $R R)+1) *(t)]$
$X=(R F+R R)$ * $\cos (t)-P P \cos [((R F+R R) /$ $\left.R R))^{*}(t)\right] \quad R F+R R$ is radius of deferent circle

$$
Y=R R *((R F / R R)+1) * \sin (t)-P P * \sin [((R F /
$$

$$
\left.\mathrm{RR})+1)^{*}(\mathrm{t})\right]
$$

$Y=(R F+R R) * \sin (t)-P P$ * $\sin [((R F+R R) / R R)$ * (t)]

Number of crossing (or of 'holes') = number of BIGHT * (Number of LEAD - 1) = RFred * [(RFred + RRred) - 1] $=\mathrm{N}$ of ROTATION comp RF centre * (N of ROTATION comp coordinate -1$)($ e.g 12 * $(19-1)=216)$
2.7142... 0.7142 ..

To get the number of BIGHT laid per REVOLUTION
RFred / RRred (e.g 12 / $7=1.7142 \ldots$)
EACH complete ROTATION of RC relative to the FC lays a BIGHT (Fig.3).
Now a tiny bit of low level formalism.

Fig. 1
In this text RF and RR are the ABSOLUTE value of the parameter so $R F=|R F|$ and $R R=|R R|$. The disambiguation convention of sign minus for the HYPO is directly applied and contained in the formulation. (Using signed values EPI would be +|RR| and HYPO -|RR|)
Note about software : there are some that make you chose explicitly "inside", other just let you signify inside (HYPO) by explicitly applying the sign minus to your entry for RC value from the keyboard. (Fig. 1 above)

HYPOTROCHOÏD

Initially A, M, T are at the same place $(A=M=T)$
ANGLES (t) and Theta are 'linked' as in not independent one from the other.
$\mathrm{RF} / \mathrm{RR}=\mathrm{N} \quad(\mathrm{N}>1$ or $\mathrm{RR}<\mathrm{RF}) \quad \mathrm{RF}=\mathrm{N}^{*} \mathrm{RR}$ (you may see RR as being "one unity" worth) $R F^{*}(t)=N * R R *(t)=R R *$ (Theta) (measures of arcs and equality of arcs)
Angles (t) and (Theta) are of opposite signs (angles move in opposite directions - PP rotates CLOCKwise so its absolute value will be signed "minus")
$($ Theta $)=-N^{*}(t)=-(R F / R R) *(t)$
$X=R R(N-1) * \cos (t)+P P * \cos [(N-1) *(t)]$
$\mathrm{X}=\mathrm{RR}((\mathrm{RF} / \mathrm{RR})-1) \cos (\mathrm{t})+\mathrm{PP} * \cos [((\mathrm{RF} /$
$R R)-1) *(t)]$
$\mathrm{X}=(\mathrm{RF}-\mathrm{RR})$ * $\cos (\mathrm{t})+\mathrm{PP} \cos [((\mathrm{RF}-\mathrm{RR})$)
$\left.R R))^{*}(t)\right] \quad R F-R R$ is radius of deferent circle
$Y=R R *(N-1) * \sin (t)-P P * \sin [(N-1) *(t)]$
$Y=R R$ * ($(R F / R R)-1) * \sin (t)-P P * \sin [((R F /$
RR) - 1) * (t]
$\mathrm{Y}=(\mathrm{RF}-\mathrm{RR}) * \sin (\mathrm{t})-\mathrm{PP}$ * $\sin [((\mathrm{RF}-\mathrm{RR}) / \mathrm{RR})$ *

(t]

Number of crossing (or of 'holes') = number of BIGHT * (Number of LEAD - 1) = RFred *[(RFred - RRred) - 1] $=\mathrm{N}$ of ROTATION comp RF centre * (N of ROTATION comp coordinate -1$)($ e.g 12 * $(5-1)=48)$
(" 0 " of X and Y axis is the centre of FC)

EPI

RF = + |RF|
$R R=+|R R|$ as centre of $R C$ is OUTside FC perimeter
$\mathrm{PP}=+|\mathrm{PP}|$ if Pen Point is on the right of RC centre
$\mathrm{PP}=0$ is Pen Point is at the centre of RC
$P P=-|P P|$ if Pen Point is BETWEEN the 2 centres or on the left of centre of FC and nearer FC centre than RC's

HYPO

$R F=+|R F|$
$R R=-|R R|$ as centre of $R C$ is INside FC perimeter
$\mathrm{PP}=+|\mathrm{PP}| \mid$ if Pen Point is on the right of RC centre $\mathrm{PP}=0$ is Pen Point is at the centre of RC
$\mathrm{PP}=-|\mathrm{PP}|$ if Pen Point is BETWEEN the 2 centres or on the left of centre of FC and nearer FC centre than RC's

ANOTHER VIEW OF THE FORMULAS (values used here are 'absolute')

Equations can also be written using
$P P=K$ * RR and replacing PP by K * RR
If $K=1===$ EPI and HYPOCYCLOÏDS
The equations: (every thing is aligned along axis X at the start position) can be seen as :
Rolling $=$ Translation + Rotation
Epitrochoid case :
$x=(R F+R R) \cos (t)-P P \cos \left(((R F+R R) / R R)^{*}(t)\right)$
$y \quad=(R F+R R) \sin (t)-P P \sin \left(((R F+R R) / R R)^{*}(t)\right)$
Hypotrochoid case :
$\left.x=(R F-R R) \cos (t)+P P \cos ((R F-R R) / R R)^{*}(t)\right)$
$y=(R F-R R) \sin (t)-P P \sin \left(((R F-R R) / R R)^{*}(t)\right)$

Fig. 2
The above equations can be written as :

- Epitrochoid :
$x \quad=(R F+R R) \cos (t)-P P \cos ($ Theta $)$
$y=(R F+R R) \sin (t)-P P \sin ($ Theta $)$

-Hypotrochoid:

x	$=(R F-R R) \cos (t)$	$+P P \cos$ (Theta $)$
y	$=(R F-R R) \sin (t) \quad-P P \sin ($ Theta $)$	

$R F=R R$ or $R F+R R$ express the radius of the DEFERENT circle along the perimeter of which the centre of RC translates respectively in the HYPOtrochoid and in the EPItrochoid.

PERIODICITY

If RF / RR is RATIOnal - it can be written as a RATIO of integers not sharing any prime factor except 1 - then the period is the numerator RF expressed as its own IRREDUCIBLE FRACTION $\left(\mathrm{RF}_{\text {red }}=\right.$ number of BIGHT)
RFred and RRred share no common prime factor.
Periodicity means the curve will re-enter, meet itself 'exactly'. A 'round' number of rotations of RC will bring the tracing point to its exact starting point, so closing the tracing.

RC regains its exact original starting position and orientation after having made $\mathrm{RR}_{\text {red }}$ revolutions around the FC and the RC will have accomplished $R F_{\text {red }} / R_{\text {red }}$ rotations on itself relative to RF centre per revolution. (BIGHT laying)

Fig. 3
($\mathrm{RF}+\mathrm{RR}$) / RR, (RF - RR) / RR is the number of ROTATION relative to coordinate made by RC around FC in one REVOLUTION (LEAD laying)
$(R F+R R) / R R=(R F / R R)+1=$
$($ RFred + RRred $) /$ RRred $=($ RFred $/$ RRred $)+1$
(RF - RR) / RR = (RF / RR) - $1=$
(RFred - RRred) / RRred $=($ RFred / RRred) -1
LEAD laying $=$ BIGHT laying $+1($ respectively -1$)$
This is the number of $\angle E A D$ laid during each REVOLUTION.

RF / GCD, that is RFred, is the number of CUSP, or

Page 5 of 6 Revision for syntax 2008 Sept 18th

RR / GCD, that is RRred, is the number of REVOLUTION the curve need to "re-enter". RFred + RRred is the Number of LEAD for EPItrochoide (absolute |values| being used) RFred - RRred is the Number of LEAD for HYPOtrochoid (|values| being used)

Total LEAD laying = Total BIGHT laying + Number of REVOLUTION (respectively -)

Please do experiments with different PP values. example as before :
EPI $R F=60$ RR $=35$ or +35
HYPO RF $=60$ RR=-35.

Try : (use both absolute and signed values)
PP=RR
$P P>R R$ but $P P<R F+R R$
$P P=R F+R R$
$P P>R F+R R$
$P P>=(2 * R F)+R C$
Do it too for HYPOtrochoid.
Note : you have to use the MINUS SIGN for entering RR from the keyboard in some software, in some others use the 'inside' setting with 'absolute' values.

In my experience the most complete curves are obtained with PP $=2$ * RF + RR (EPI case) Try also PP = (3/2*RF) + RR EPI case or with (-RR) for HYPO case

Reminder:

	O (radian) or degree)		$\mathrm{Pi} / 2$ or 90°		Pi or 180°		$3^{\star} \mathrm{Pi} / 2$ or 270°		$2^{\star} \mathrm{Pi}$ or 360°
COSinus	+1	waNing	0	waNing	-1	waXing	0	waXing	+1
SINus	0	waXing	+1	waNing	0	waNing	-1	waXing	0

In trigonometry, angles are signed PLUS in anticlockwise rotation and MINUS in clockwise rotation. This is just a disambiguating convention. It is not a measure of concrete reality.

Note that :

- for EPItrochoids ROTATION and REVOLUTION are in the SAME direction : either both anti-clockwise or both clockwise
- for HYPOtrochoids ROTATION and REVOLUTION are in OPPOSITE directions : one is clockwise while the other is anti-clockwise.

The formulas suppose that at the start all is aligned along the positive X axis.
(t) is the angle of rotation in radians.

Term (t) is linear motion
Terms $\operatorname{Sin}(t)$ and $\operatorname{Cos}(t)$ are angular motion
EPItrochoid = The RC rotating in one direction, the relative rotation of the PP arm rigidly fixed on it has the same direction.

The total number of rotation of PP arm relative to the coordinate system will be (RF / RR) + 1 Think sidereal versus solar. (per REVOLUTION) Number of ROTATION relative to coordinate $=$ Number of ROTATION relative to FC centre +1.

HYPOtrochoid = since the relative rotation of the PP arm is opposite the direction the circle is rolling, the absolute number of the arm rotation as measured by the coordinate system is one less than the
number of rotations made by the mobile around the centre of the fixed. (RF / RR) - 1

EPItrochoid
$\mathrm{X}=(\mathrm{RF}+\mathrm{RR}) \operatorname{Cos}(\mathrm{t})-\mathrm{PP} \operatorname{Cos}[((\mathrm{RF} / R R)+1) \mathrm{t}]$
$Y=(R F+R R) \operatorname{Sin}(t)-P P \operatorname{Sin}[((R F / R R)+1) t]$
HYPOtrochoid
$\mathrm{X}=(\mathrm{RF}-\mathrm{RR}) \operatorname{Cos}(\mathrm{t})+\mathrm{PP} \operatorname{Cos}[((\mathrm{RF} / \mathrm{RR})-1) \mathrm{t}]$
$Y=(R F-R R) \operatorname{Sin}(t)-P P \operatorname{Sin}[((R F / R R)-1) t]$
DOUBLE GENERATION (Luigi CREMONA)
Here are 2 links as illustration only.
http://poncelet.math.nthu.edu.tw/chuan/99s/4/rose-d.htm
http://steiner.math.nthu.edu.tw/disk3/gc-03/8/3d.html

LOOKING ANEW INSIDE EQUATIONS

The centre of RC travels around FC following the perimeter of a DEFERENT circle with radius :
RF + RR for EPItrochoid
RF - RR for HYPOtrochoid
The parametric equations for this centre of RC are : (case of HYPO only here)
$x=(R F-R R) * \cos (t) \quad y=(R F-R R) * \sin (t)$
This is *not* the HYPOtrochoid itself : the parametric equations of the Tracing Point (which being rigidly fixed on the RC is subjected to the motion of translation of RC centre) must be included.
They are
$x=P P * \cos$ (Theta) $\quad y=P P * \sin$ (Theta)
that gives
$x=(R F-R R) * \cos (t)+P P * \cos$ (Theta)
$y=(R F-R R) * \sin (t)+P P * \sin$ (Theta)

Now we 'homogenise' by replacing (Theta) by its value expressed in term of (t)
Let us make it a short story
Theta $=((R F-R R) / R R) *(t)=(R F / R R-1) *(t)$
End result is

for HYPO case :

$\mathrm{x}=(\mathrm{RF}-\mathrm{RR})$ * $\cos (\mathrm{t})+\mathrm{PP} * \cos [(\mathrm{RF} / \mathrm{RR}-1)$ * $(\mathrm{t})]$
$y=(R F-R R) * \sin (t)-P P * \sin [(R F / R R-1) *(t)]$
for EPI case :
$\mathrm{x}=(\mathrm{RF}+\mathrm{RR})$ * $\cos (\mathrm{t})-\mathrm{PP}{ }^{*} \cos [(\mathrm{RF} / \mathrm{RR}+1)$ * $(\mathrm{t})]$
$y=(R F+R R) * \sin (t)-P P * \sin [(R F / R R+1) *(t)]$

HARD AND FAST EQUATIONS

for both EPI AND HYPO cases, under the provision that "SIGNED" values are used in them (only SIGN " + " is used in the equations).[Reminder :
$a *(-b)=(-a) * b=-a b$ and $a /(-b)=(-a) / b=-(a / b)$
$a+(-b)=a-b$ and $a-(-b)=a+b$]
$X_{(t)}=(R F+R R) * \cos (t)+P P * \cos [((R F+R R) / R R) *(t)]$
$Y_{(t)}=(R F+R R) * \sin (t)+P P * \sin [((R F+R R) / R R) *(t)]$

PRACTICAL EXAMPLE

$60 / 35=1$ remainder 25
$(60 * 2) / 35=3$ remainder 15
$(60$ * 3) / $35=5$ remainder 5 .../... 60 * 4
$(60 * 5) / 35=8$ remainder $20 \quad \ldots / \ldots 60$ * 6
(60 * 7) $/ 35=12$ remainder ZERO so 12 REVOLUTION
shorter it is to make use of the LMC as in
LCM / RR $=(2 * 2 * 3 * 5 * 7) /(5 * 7)=2 * 2 * 3$
$420 / 35=12$ ROTATION
12 RC rotations imply 12 * RR $\quad(12 * 35=420)$ as representing arc length - in fact it is
12 * (35 * 2 * Pi $)=420(2$ * Pi) -
so $420 /$ RF $420 / 60=7$ REVOLUTION - in fact it is
$(12$ * $35 * 2 * P i) /(60 * 2 * P i)=(12 * 35) / 60=420 / 60$
A shorter way is LCM / RF $=420 / 60=7$
$(2 * 2 * 3 * 5 * 7) /(2 * 2 * 3 * 5)=7$
If you insist on GCD
$\mathrm{GDC}=5 \quad[\mathrm{RF}=60=2$ * 2 * 3 * $5 \quad \mathrm{RR}=35=5$ * 7$]$
RF / GCD = RFred $60 / 5=\overline{1} 12$ ROTATION
RR / GCD $=$ RRred $35 / 5=7$ REVOLUTION
12 * RC perimeter $=7$ * RF perimeter (using equality of arcs).

Or use directly the CIRCLES RATIO (RF / RR) ($60 / 35$) and express it as an irreducible fraction (RFred / RRred) or (12 / 7)
(RFred) is Number of ROTATION (12)
(RRred) is Number of REVOLUTION (7)

