STANDARD HERRINGBONE-PINEAPPLE KNOTS TYPES and PASS

The topic of PASS is treated at length elsewhere so, if needed, consult the appropriate PDF and web pages I already wrote. The present document is just the result of easy but attentive observations and abstract thinking.

Here I am using the VERTICAL CYLINDER frame of reference with BIGHT-BORDER at TOP and BOTTOM as the HORIZONTAL MANDREL frame of reference has BIGHTBORDERS on the LEFT and RIGHT side -- Mandrel is Cylinder after a Pi/2 or 90° trigonometric or anti-clockwise rotation)

As everyone with any knowledge about those SHPK knows
--- the BIGHT-RIMS on each BIGHT-BORDER are numbered from 1 to \boldsymbol{A} (\boldsymbol{A} denotes the number of PASS in SHKP which number is also the total number of BIGHTS in each BIGHT-NEST)
--- that the TYPE of the SHPK is determined by the Number attributed to the BIGHTRIM where the HALF-PERIOD N ${ }^{\circ} 1$ of the FOUNDATION or BASE THK COMPONENT which starts on BIGHT-RIM ${ }^{\circ} \mathbf{1}$ arrives on the other BIGHT-BORDER.

Read the appropriate topics in this page and in that page.

In Fig 1 though it is limited to the 1-PASS to 5-PASS cases is a complete dissection of the possible TYPES for each case.

From observations easy to make it is plain to see there are as many types of a given SHPK that the knot has PASS. (Number of PASS is denoted by \boldsymbol{A})

A = $\mathbf{2}$ implies that you can make a TYPE I and a TYPE II
A= 4 implies that you can make a TYPE I, a TYPE II, a TYPE III and a TYPE IV.
SHPK are arrangements of THK COMPONENTS having an ODD number of LEAD, those components are distributed among TWO SETS. The difference of the Number of LEAD in each THK between the two SETS is " 2 "

The 2 SETS can be both "populated" but in some case one of the SET may be "empty".
As can be easily deduced the case where one of the SET IS EMPTY ALWAYS corresponds to TYPE ' \boldsymbol{A} '
TYPE II for a 2-PASS
TYPE III for a 3-PASS
TYPE IV for a 4-PASS
.... TYPE A in an A-PASS SHPK has one "empty" SET and a "populated" SET containing as many identical THK COMPONENTS as there are PASSes

Fig 1

For those not at ease with "abstract thinking" Fig 1 will offer only 'obscurity' so for them I put, at the end of the document, "visual aids" under the form of diagrams of cordage routes of all the cases shown in Fig 1.

As you can easily observe there is
--- one SET of the LARGER component in term of LEAD
--- one SET of the SMALLER component in term of LEAD

Let us denote the larger has having $5+(n$ * 2$)$ LEAD,
the smaller has having $3+(n * 2)$ LEAD
with \boldsymbol{n} taking value from $\boldsymbol{0}$ to \boldsymbol{m}
$n=0 \quad 3 L$ and $5 L \quad n=15 L$ and $7 L \quad n=717 L$ and 19L

TYPES are $A-0, A-1, A-2, A-3 A-k$
With generalisation the TYPE is $\boldsymbol{A}-\boldsymbol{k}$ with \boldsymbol{k} taking value from \boldsymbol{O} to ($\boldsymbol{A}-\mathbf{1}$)

Try and remember that for ANY TYPE T (\mathbf{T} being: । ॥ ॥ IV
V........XX....XXVI...)

One SET contains :
T THK COMPONENTS
One SET contains: $\boldsymbol{A}-\mathbf{T}$ THK COMPONENTS ($\mathrm{A}-\mathrm{T}>-1$)

Fig Type I 2-PASS

Type I 2-PASS
One SET== ONE THK 9L 4B
One SET== ONE THK 7L 4B

Fig Type II 2-PASS

The "reference" is the blue foundation Knot with ODD numbered HALF-PERIODS going from BOTTOM RIGHT to TOP LEFT

Type II 2-PASS
One SET==TwO THK 5L 4B
One SET == EMPTY or NONE

Fig Type I 3-PASS
Fig Type II 3-PASS

Fig Type III 3-PASS

Type I 3-PASS
One SET == ONE THK component 5L 4B One SET== TWO THK component 3L 4B

Type II 3-PASS

One SET == Two тнк component 5L 4B
One SET== ONE THK component 3L 4B

Type III 3-PASS
One SET == THREE THK 5L 4B
One SET== EMPTY or NONE

Fig Type I 4-PASS
Fig Type II 4-PASS

Fig Type III 4-PASS
Fig Type IV 4-PASS

Type I 4-PASS
One SET== ONE THK 5L 4B
One SET== THREE THK 3L 4B
Type II 4-PASS
One SET== TWO THK 5L 4B
One SET== TWO THK 3L 4B

Type III 4-PASS
One SET== THREE THK 5L 4B
One SET $==$ ONE THK 3L 4B
One SET== ONE THK 3L 4B

Type IV 4-PASS
One SET== FOUR THK 3L 4B
One SET == EMPTY or NONE

Fig Type I 5-PASS

Fig Type II 5-PASS

Fig Type III 5-PASS

Type I 5-PASS
One SET == ONE THK component 5L 4B One SET== FOUR THK component 3L 4B

Type II 5-PASS

One SET == Two tHK component 7L 4B One SET== THREE THK component 5L 4B

Type III 5-PASS
One SET == THREE THK 5L 4B
One SET== TWO THK component 3L 4B

Fig Type IV 5-PASS

Type IV 5-PASS
One SET == FOUR THK 7L 4B
One SET== ONE THK component 5L 4B

Fig Type V 5-PASS

Type V 5-PASS
One SET == FIVE THK component 5L 4B
One SET== EMPTY or NONE

Till now we have seen things from the CORDAGE ROUTE point of view, let us see them from the COLOUR PATTERN point of view.

PATTERN TYPE I 5-PASS
PATTERN TYPE II 5-PASS

PATTERN TYPE III 5-PASS

PATTERN TYPE IV 5-PASS
PATTERN TYPE V 5-PASS

I do hope that the "rule of thumb" to visually find the TYPE of a SHPK immediately jumped to your eyes!

Order (VERTICAL CYLINDER frame of reference) of the BIGHT-RIM "in colour of strand")

Λ BLUE \wedge

^ DARK GREEN

^ LIGHT GRAY

^ DARK GRAY

^ LIGHT BROWN
W/V/MMNMAN/VV

V LIGHT BROWN

V DARK GRAY

V LIGHT GRAY

V DARK GREEN

V blue

Still the same 'system' : you take as « start » the BOTTOM BIGHT-RIM N ${ }^{\circ} 1$ and you immediately «see» the result at the TOP (it is easy to do it in the other direction)

FIRST BOTTOM COLOUR	LAST TOP COLOUR	TYPE	FIRST TOP COLOUR	LAST BOTTOM COLOUR	
BLUE	BLUE Colour N ${ }^{\circ} 1$	I	BLUE Colour No 1	BLUE	
BLUE	DARK GREEN Colour N ${ }^{\circ} 2$	$\\|$	DARK GREEN Colour № 2	BLUE	
BLUE	LIGHT GRAY Colour N ${ }^{\circ} 3$	$\\|$	LIGHT GRAY Colour N ${ }^{\circ} 3$	BLUE	
BLUE	DARK GRAY Colour N ${ }^{\circ} 4$	$\mathbf{I V}$	DARK GRAY Colour № 4	BLUE	
BLUE	LIGHT BROWN Colour $\mathrm{N}^{\circ} 5$	\mathbf{V}	LIGHT BROWN Colour № 5	BLUE	

AT LEAST ONE OF the extremity has colour $\mathrm{N}^{\circ} 1$ and at the other extremity is the colour the number of which is the same as the one for the TYPE.

