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Regular Mébius Knot Tree (RMKT), see Fig. 306.
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Fig. 306 — The Regular Mdbius Knot Tree.

We may obtain the string-run diagram of a Regular Mébius Braid from the string-
run diagram of its virtual Regular Cylindrical Braid by deleting the Matthew Walker
section. Since p,, and b, are both either odd or even, we have two types of string-run
diagrams. The leftmost diagram in Fig. 307 depicts the type of string-run diagram (solid
lines) for a Regular Mdbius Braid with p,, and b, both odd; the fourth diagram from
the left depicts the type of string-run diagram (solid lines) for a Regular Mobius Braid
with pm and b, both even. The uppermost solid horizontal line is the lowermost solid
horizontal line after it has received a rotation of 180° about the vertical centre-line of
the diagram as axis of rotation. The virtual Regular Cylindrical braid incorporates
the dotted Matthew Walker section. This Matthew Walker Section has one of the two
depicted codings.

A Regular Mdbius Braid with an aesthetically acceptable weaving pattern requires
a coding which has Evert-Lateral equivalency. In Fig. 308 two column-coded and two
row-coded examples of such a coding are depicted. Besides the restriction that pn and
by must both have the same parity, row-coding demands the further condition that
by, must be a multiple of the number of rows in a coding-block. Hence for the leftmost
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bottom coding in Fig, 308 b,, must be a multiple of 4, and for the rightmost bottom
coding in Fig. 308 b, must be a multiple of 5.

CST5TS sese
SIS oSede
SIS el
RSISISS oSede:
SIS o Sedes
RSISISS eSeSe
s 2eTes SIS
TRSSSISY s s s TR
SeTe e 5SS
SIS SIS
SIS el
= ==
SIS SIS
o Ry, Ko oP
Pa=7=0DD A pa=7 BIGHTS A po=7 BIGHTS 0 2B=EVEN A p,=6 BIGHTS A p,=6 BIGHTS
b,=31=00D MATTHEW WALKER MATTHEW WALKER b, 332=EVEN MATTHEW WALKER  MATTHEW WALKER
SEGTION. SECTION. SEGTION. SECTION.

Fig. 307 — The string-run diagrams for pn, and b, both odd, and both even.

Fig. 308 — Examples of Evert-Lateral coding equivalency.

It will thus be evident that a Regular Mdbius Braid cannot have a Gaucho-coding,
nor can it have a Casa-coding when p,, is odd. Tt can, however, have a Headhunter’s-
coding, or when py, is even a Casa-coding.

Tig. 309 shows the grid-diagrams with their associated instructions of the virtual
Regular Cylindrical Braids which represent Regular Mobius Knots with p,, = 8 parts
and by, = 30 bights. After braiding the left-hand virtual Regular Cylindrical Braid, the
band should be given a half twist with a right-hand helix, while the right-hand virtual
Regular Cylindrical Braid should be given after braiding a half twist with a left-hand
helix. Fach braid can then be tightened to a correctly finished Regular Mobius Knot.
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Fig. 309 — Casa-coded ppm/bm = 8/30 Regular Mdbius Knots.

Note that the procedure at the left in Fig. 309 leads through a virtual multi overhand
knot (it has two half twists with a right-hand helix), whereas the procedure at the right
in Fig. 309 does not lead through a virtual multi overhand knot.

Although we can braid any Regular M6bius Knot by means of a virtual Regular
Cylindrical Knot, a procedure which has theoretical advantages with respect to its path
in the RMKT, it is from the practical point of view not a good method. The reason
being threefold :

(1). The half twists in the Matthew Walker section makes the braiding process more
cumbersome, because we have to pay careful attention that they do not accidentally
disappear.

(2). The Matthew Walker coding of the crossings in the Matthew Walker section
makes the braiding process, through the half-cycles affected, more cumbersome.

(8). At the end of the braiding process much slack will have to be taken out.

It will thus be obvious that, if possible, a much more practical braiding process
should be used. A process which is direct rather than indirect through some virtual
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braid-form. Fortunately such a process does exist, and what is more, the procedures
involved fit in beautifully with our braiding procedures for Regular Cylindrical Knots
and Braids. This is of course not surprising since there is clearly some close relationship
between Regular M8bius Braids and Regular Cylindrical Braids, a relationship well
demonstrated by their respective evolution trees.

Let’s take a closer look at the grid-diagram of a Regular Mobius Knot, and let’s first
look at the case where both p,, and b,, are odd.

We shall start with the grid-diagram of the virtual Regular Cylindrical Knot having
p=1pn=7and b= %-bﬂ‘« = 19, which represents a 2-pass Headhunter’s-coded
Regular Mébius Knot with pm = 7 and by = 31. This diagram with its braiding
instructions is presented in Fig. 310. '
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Fig. 310 — The virtual Regular Knot p/b = 7/19 which represents

a Regular Mdbius Knot p /bm = 7/31.

Let’s redraw this grid-diagram with the string-run only (dotted lines) in the Matthew
Walker section; see Fig. 311. Take the left-hand diagram and follow half-cycle # 1, then
follow half-cycle # 2, then half-cycle # 3 till we reach the upper horizontal solid line. We
have now to rotate this line through 180° as described on page 356, and continue, from
the bottom horizontal solid line, with this half-cycle till we reach the bight-boundary.
But in reality the braid gradually rotates through the 180°, and hence half-cycle 3
continues to the apparent bight-boundary on the right. In order to show this clearly
in a grid-diagram, we rotate our left-hand grid-diagram through the 180° and obtain
the second grid-diagram from the left. Thus half-cycle # 3 runs from the apparent
left-hand bight-boundary of the leftmost grid-diagram to the upper horizontal solid
line and continues from the bottom horizontal solid line of the second grid-diagram
from the left to the apparent right-hand bight-boundary of this grid-diagram. Next
in this second grid-diagram from the left, half-cycle #4 runs from the apparent right-
hand bight-boundary to the apparent left-hand bight-boundary. Then follows half-cycle
#5 in this diagram, next half-cycle #6, then half-cycle # 7 till the upper horizontal
line (all in the second grid-diagram from the left). This half-cycle continues from the
bottom horizontal solid line of the leftmost grid-diagram to the apparent right-hand
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bight-boundary of this grid-diagram. Then follows half-cycle # 8 which runs from the
apparent right-hand bight-boundary (leftmost grid-diagram) to the apparent left-hand
bight-boundary of this grid-diagram. And so on.
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Fig. 311 — The Regular Mdbius Knot ps,/bm = 7/31 from Fig. 310.

It is as if two strings are being laid down simultaneously; one string lays down the
half-cycles
HL; #H2; #3445 455 #6; 47 ete.
and the other string lays down simultaneously the half-cycles
# 15 #2— # -3 A H# -5 #6—; T et
However the string which lays down the half-cycles #1; #2; etc. is real, but the
string which lays down the half-cycles # —1; #2— ; etc. is imaginary since these
half-cycles are in fact the half-cycles of the real string.

It will now be obvious that the string-run in the Regular Mobius Braid can much
easier be followed in a grid-diagram which consists of the second grid-diagram from the
left stacked on top of the leftmost grid-diagram. Such a diagram is depicted on the
right-hand side of Fig.311. It is the grid-diagram of a Regular Cylindrical Braid with
p/b = pm/bm in which two strings are being laid down simultaneously. One string
starts with half-cycle #1 and the other string starts simultaneously with half-cycle
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# —1=32. The half-cycles #2 and #2— = 33 are being laid down simultaneously,
as are the half-cycles #3 and # —3 = 34; #4 and #4— = 35; #5 and # —5 = 36;
etc. The string which lays down the half-cycles #1; #2; etc. is real, but the string
which lays down the half-cycles # 32 ; # 33 ;etc. is imaginary, nevertheless in the
Regular Mébius Braid the half-cycles of the real string-run intersect in actual fact
the imaginary string-run. In order to handle this situation in a simple way, we do
as if the imaginary string-run starts at the left-hand bight-boundary with half-cycle
#31*. This is thus an imaginary half-cycle of higher order, and consequently the real
string-run does not intersect this particular half-cycle.

With Euclid’s algorithm we can readily calculate the path formula for this p/b =
Pm/bm = T7/31 Regular Cylindrical Braid (a Regular Knot since g.c.d.(7,31) = 1),
and hence we can readily find its associated A*-value, which in this case is equal to 22.
With this A*-value we can construct the algorithm-diagram for the real string-run in the
usual manner with its complementary cyclic bight-number scheme which has the é-value
sequence 0,22,13,4,26,17,8,30,21,12,3,25,16,7,29,20, 11,2, 24, 15,6, 28, 19,10, 1,23,
14,5,27,18,9.

This gives in the algorithm diagram the ¢-value sequence 0,22,13,4,26,17,8.

With this A*-value, the complementary cyclic bight-number scheme associated with
the imaginary string-run, including the imaginary half-cycle of higher order, has from
the Standing End bight-point of the real string-run the ¢-value sequence b"‘;l = 15,6,
98,19,10,1,23,14,5,27,18,9,0,22, 13, 4,26, 17,8, 30, 21,12, 3,25, 16, 7, 29, 20, 11,2, 24 .
This gives in the algorithm diagram the i-value sequence 15,6,28,19,10,1,23.

Both these i-value sequences are set off in the algorithm diagram for the Mobius
braid, but since a real half-cycle cannot intersect the imaginary half-cycle of higher
order, we underline, for the half-cycles which run from lower right to upper left, the
t-values associated with the imaginary string-run.

It is as if we lay down 1 imaginary half-cycle of higher order, b = b,, real half-cycles,
and b = by, imaginary half-cycles, hence a total of (20-+1) = (2b,,41) half-cycles. Con-
sequently since (26+1) = (2b,,+1) = odd, the maximum ¢-value in the i-value sequence
s %}Eﬁ = 15. Thus the actual applicable complementary cyclic bight-number
scheme has the i-value sequence 0,6,13,4,10,1,8,14,5,12,3,9,0,7,13,4,11,2,8, 15,86,
12,3,10,1,7,14,5,11,2,9. The underlining of the values concerned is deleted for the

half-cycles from lower left to upper right. Note that each value occurs twice, exept
(2bm+1)—3
2

=15 of course.

Thus the algorithm diagram for our case with p = p,, = 7 has the i-value sequence
0,6,13,4,10,1,8, and after entering the coding for the intersection-columns, we can
read off the half-cycle algorithms for the real string-run.

To braid the Mobius braid in accordance with the half-cycle algorithms obtained,
we put in the first revolution (the circumference of the cylinder) of the string half a
twist and then follow the same apparent surface of the string. This will ensure that we
automatically obtain the required half twists in the string with as end result a correctly
braided Regular Mébius Knot.

In order to get a good understanding of the process which determines the half-cycle
algorithms, we shall give a few examples involving the algorithm diagram for the 2-pass
Headhunter’s-coded Regular Mobius Knot with pm/bm = 7/31, depicted in Fig. 311.

Half-cycle 1:

Half-cycle 1 is always a free run. Half-cycle 1 runs from lower left to upper right.
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Half-cycle 2:

Half-cycle 2 is associated with bight-number ¢ = 252 = 0. Hence from the algorithm
diagram we have to read off, for half-cycle 2, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are equal to i = 0. Half-cycle
2 runs from lower right to upper left, hence in the algorithm diagram we read the lower
line from right to left. This gives us: mno crossings, hence: free run.

Half-cycle 3:

Half-cycle 3 is associated with bight-number i = 352 = 0. Hence from the algorithm
diagram we have to read off, for half-cycle 3, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are equal to ¢ = 0. Half-cycle
3 runs from lower left to upper right, hence in the algorithm diagram we read the upper
line from left to right. This gives us: no crossings, hence: free run.

Half-cycle 4:

Half-cycle 4 is associated with bight-number ¢ = #5% = 1. Hence from the algorithm
diagram we have to read off, for half-cycle 4, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to ¢ = 1.
Half-cycle 4 runs from lower right to upper left, hence in the algorithm diagram we
read the lower line from right to left. However, ¢ = 1 is underlined, hence should be
neglected for this half-cycle only (since it is a crossing of half-cycle 4 with the imaginary
half-cycle of higher order). This gives us: no crossings, hence: free run.

Half-cycle 5:

Half-cycle 5 is associated with bight-number ¢ = 5—;§ = 1. Hence from the algorithm
diagram we have to read off, for half-cycle 5, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to ¢ = 1.
Half-cycle 5 runs from lower left to upper right, hence in the algorithm diagram we read
the upper line from left to right. This gives us: wu.

Half-cycle 6:

Half-cycle 6 is associated with bight-number i = %Z = 2. Hence from the algorithm
diagram we have to read off, for half-cycle 6, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to 1 = 2.
Half-cycle 6 runs from lower right to upper left, hence in the algorithm diagram we read
the lower line from right to left. This gives us: o.

Half-cycle 7:

Half-cycle 7 is associated with bight-number ¢ = 7—;—3 = 2. Hence from the algorithm
diagram we have to read off, for half-cycle 7, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to ¢ = 2.
Half-cycle 7 runs from lower left to upper right, hence in the algorithm diagram we read
the upper line from left to right. This gives us: wu.

Half-cycle 8:

Half-cycle 8 is associated with bight-number ¢ = §—;—2 = 3. Hence from the algorithm
diagram we have to read off, for half-cycle 8, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to ¢ = 3.
Half-cycle 8 runs from lower right to upper left, hence in the algorithm diagram we read
the lower line from right to left. This gives us: o.
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Half-cycle 9:

Half-cycle 9 is associated with bight-number i = % = 3. Hence from the algorithm
diagram we have to read off, for half-cycle 9, the consecutive crossing-movements in
accordance with the coding for the bight-numbers which are less than or equal to ¢ = 3.
Half-cycle 9 runs from lower left to upper right, hence in the algorithm diagram we read
the upper line from left to right. This gives us: wu.

Half-cycle 10:

Half-cycle 10 is associated with bight-number ¢ = &2_1 = 4. Hence from the algo-
rithm diagram we have to read off, for half-cycle 10, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 4. Half-cycle 10 runs from lower right to upper left, hence in the algorithm diagram
we read the lower line from right to left. This gives us: u —o.

Half-cycle 11:

Half-cycle 11 is associated with bight-number ¢ = 1—1233 = 4. Hence from the algo-
rithm diagram we have to read off, for half-cycle 11, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 4. Half-cycle 11 runs from lower left to upper right, hence in the algorithm diagram
we read the upper line from left to right. This gives us: o —u.

Half-cycle 12:

Half-cycle 12 is associated with bight-number ¢ = % = 5. Hence from the algo-
rithm diagram we have to read off, for half-cycle 12, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 5. Half-cycle 12 runs from lower right to upper left, hence in the algorithm diagram
we read the lower line from right to left. This gives us: u« —o.

Half-cycle 13:

Half-cycle 13 is associated with bight-number ¢ = %13— = 5. Hence from the algo-
rithm diagram we have to read off, for half-cycle 13, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 5. Half-cycle 13 runs from lower left to upper right, hence in the algorithm diagram
we read the upper line from left to right. This gives us: o—u.

Half-cycle 14:

Half-cycle 14 is associated with bight-number i = 12=2 = 6. Hence from the algo-
rithm diagram we have to read off, for half-cycle 14, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 6. Half-cycle 14 runs from lower right to upper left, hence in the algorithm dia-
gram we read the lower line from right to left. However, ¢ = 6 is underlined, hence
should be neglected for this half-cycle only (since it is a crossing of half-cycle 14 with
the imaginary half-cycle of higher order). This gives us: u—o.

Half-cycle 15:

Half-cycle 15 is associated with bight-number ¢ = L§2:§ = 6. Hence from the algo-
rithm diagram we have to read off, for half-cycle 15, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 6. Half-cycle 15 runs from lower left to upper right, hence in the algorithm diagram
we read the upper line from left to right. This gives us: © —o—u.
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Half-cycle 16:

Half-cycle 16 is associated with bight-number 7 = J% = 7. Hence from the algo-
rithm diagram we have to read off, for half-cycle 16, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 7. Half-cycle 16 runs from lower right to upper left, hence in the algorithm diagram
we read the lower line from right to left. This gives us: o—u —o.

Half-cycle 17:

Half-cycle 17 is associated with bight-number ¢ = 572;3 = 7. Hence from the algo-
rithm diagram we have to read off, for half-cycle 17, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 7. Half-cycle 17 runs from lower left to upper right, hence in the algorithm diagram
we read the upper line from left to right. This gives us: u—o—u.

Half-cycle 18:

Half-cycle 18 is associated with bight-number ¢ = EZ_—Z = 8. Hence from the algo-
rithm diagram we have to read off, for half-cycle 18, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 8. Half-cycle 18 runs from lower right to upper left, hence in the algorithm diagram
we read the lower line from right to left. This gives us: o—u — 2o.

Half-cycle 19:

Half-cycle 19 is associated with bight-number ¢ = %3 = 8. Hence from the algo-
rithm diagram we have to read off, for half-cycle 19, the consecutive crossing-movements
in accordance with the coding for the bight-numbers which are less than or equal to
i = 8. Half-cycle 19 runs from lower left to upper right, hence in the algorithm diagram
we read the upper line from left to right. This gives us: u—o— 2u.

And so on.

% Prove that for p, and b, odd with g.c.d. (pm,bm) = 1, the bighi-number 1

associated with the half-cycle (of the imaginary string-run) which coincides with the
b=l
P

Standing End half-cycle of the real string-run has the value

An arbitrary intersection-column in the algorithm diagram carries 1 = a* for the
half-cycles, associated with the imaginary string-run, which run from left to right, and
carries 1 = b* for the half-cycles, associated with the imaginary string-run, which run
from right to left :

Prove that a* + b* = b, — 2.

For Regular Mébius Knots with pn, and b, even, and g.c.d. (2pm, [pm + bn]) = 2,
the procedure is in essence similar, but the Regular Cylindrical Braid with p = pn, and
b = by, is however a Semi Regular Knot which requires two strings in its construction
since the g.c.d. (p, ) = 2.

An example of such a Regular Mobius Knot is shown in Fig. 312, depicting the 2-pass
Herringbone-coded Regular Mobius Knot with pp, /b, = 10/32.
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Fig. 312 — A 2-pass Herringbone-coded Regular Mébius Knot with pm/bm = 10/32.

The real string-run and the imaginary string-run belong each to a Regular Knot

with p*/b* = 2= /bm = 5/16.

With Euclid’s algorithm we again calculate the path formula for this p*/d*

b / b = 5/16 Regular Knot, and hence its associated A*-value, which in this case

is equal to 3, is readily found.
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The imaginary string-run does not go through the bight-point of the Standing End
of the real string-run, but goes through the bight-point immediately above it. The
half-cycle through this bight-point is associated with bight-number:

by — P — 2 32102
. £ 7 A* =|-{ ———13
( 4 b 4

2

With the A*-value for the Regular Knot with £z /b—;‘« =5/16 we can construct the
algorithm diagram for the real string-run in the usual manner, and obtain the i-value
sequence 0,-,3,-,6,-,9,-,12, -.

For the imaginary string-run, including the imaginary half-cycle of higher order, we

obtain the i-value sequence - ,’— (E%ﬁ:l) A* by =L o4y 0, -,10, - ,13.
=

=1.

1=

16

Both these ¢-value sequences are combined which results in the i-value sequence
0,1,3,4,6,7,9,10,12,13.

This ¢-value sequence is then set off in the algorithm diagram for the Mobius braid,
but since a real half-cycle cannot intersect the imaginary half-cycle of higher order, we
only delete the underlining of the i-values associated with the imaginary string-run for
the half-cycles which run from lower left to upper right.

We like to stress again that the 2-pass Herringbone-coded Regular Mobius Knot
Pm [bm = 10/32 is produced by the real string-run, and that the imaginary string-run is
in fact laid down by the real string-run, but that in the Semi Regular Knot p/b = 10/32
the imaginary string-run is laid down by a separate string.

Note that the coding along every odd numbered half-cycle of the real
string-runis //\\//\\/, and that the coding along every even numbered
half-cycle of the real string-runis \ //\\//\\.

We can either enter these coding sequences or their associated under and over se-
quences for the half-cycle direction concerned. After entering these sequences in the
algorithm diagram, we can read off the half-cycle algorithms for the real string-run.

In order to braid the Mdbius braid in accordance with the half-cycle algorithms
obtained, we put in the first revolution (the circumference of the cylinder) of the string
half a twist and then follow the same apparent surface of the string. This will ensure
that we automatically obtain the required half twists in the string with as end result a
correctly braided Regular Mobius Knot.
+x Prove that for p,, and b, even with g.c.d.(2pm, [pm + bwm]) = 2, the bight-number
¢ associated with the half-cycle (of the imaginary string-run) which goes through the
bight-point immediately above the bight-point of the Standing End half-cycle of the

B — Py —
,_(m Zm Z)A*b_nﬁ
2

real string-run has the value

An arbitrary intersection-column in the algorithm diagram carries ¢ = a* for the
half-cycles, associated with the imaginary string-run, which run from left to right, and
carries 1 = b* for the half-cycles, associated with the imaginary string-run, which run
from right to left :

_(bm—im_z)A* o
2

o

1

I I

* V _(bm_—im;?)A*

o = Q

b
2

Prove that o* + b* = %’1 -2,
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The Braider should be well aware of the pitfalls associated with the braiding proce-
dures for Mébius braids. Especially braiders who work with round braiding material,
tend to make the error of omitting the necessary half twists in the string when braiding
a Regular Mobius Braid by means of its associated virtual Regular Cylindrical Braid.
We have seen that in such cases the braider does not obtain a Regular Mdbius Braid,
but will finish up with a Regular Cylindical Braid which can be transformed into a
false M6bius band (the band retains its separate north, south, east and west surface
lines!). This neglect of half twist is also the standard procedure found in the topolog-
ical knot theory. Hence the fact that the topological knot theory is a bogus theory
as far as knots and braids are concerned can readily be demonstrated with a simple
Regular Mobius Braid. The topological knot theory is only as a purely mathemati-
cal subject of any value, and hence of no value to knots and braids. Unfortunately it
are the academically brainwashed bogus mathematicians who would like us to believe
differently.



