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Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants
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The helix hand reversal exhibited by the tendrils of climbing plants when attached to a support is
investigated. Modeled as a thin elastic rod with intrinsic curvature, a linear and nonlinear stability
analysis shows the problem to be a paradigm for curvature induced morphogenesis in which symmetry
breaking is constrained by a global invariant. [S0031-9007(98)05309-5]

PACS numbers: 87.45.—k

The interesting phenomenon of helix hand reversalat the Linnean Society in 1865. Thanks to his stimulus,
namely, the spontaneous switching of a helical structur¢éhe subject attracted the interest of eminent 19th century
of one handedness to its mirror image, can be found iiologists such as Gray, de Vries, and Sachs. Interestingly
many different guises and was first callpdrversionby  enough, Darwin himself appears to have been unaware of
the 19th century topologist Listing, presumably after thethe earlier history of the topic; in particular, it was studied
usage of the worgherversugto describe inverted seashell by Léon in 1858, Dutrochet in 1844, and von Mohl and
specimens in choncology. Its occurrence in climbingde Candolle in 1827. In fact, de Candolle himself
plants provides a beautiful mechanical system with whichattributes the first observation of the phenomenon to
to study the problem of symmetry breaking constrainedAmpére in the late 18th century. Furthermore a careful
by a global invariant; total twist in this case. Moreover, examination of the tendrils drawings (Tabula V) of Linné
we show here that the key mechanical quantity drivingn Philosophia Botannic&learly shows a spiral inversion
the process is thimtrinsic curvatureof the filament (i.e., and seems to indicate that Linné was well aware of the
the curvature of the filament in its lowest relaxed energyphenomenon as early as 1751.
state). Itis important to note that many filamentary shapes
in biology are driven by intrinsic twist (such as the forma-
tion of bacterial macrofibers or DNA [1]), whereas ten-
dril perversion provides an example of a different scenario
for the shape formation, namely, intrinsic curvature driven
morphogenesis. Indeed, the twist-to-writhe conversion ar-
gument, usually used to explain the coiling of filaments
through energy relaxation [2], does not apply here as the
filaments are twistless.

Among the many different mechanisms climbing plants
use to climb and grow along supports, the so-called
“tendril bearers” or “clingers” constitute an important
class (e.g., the grape vine, the hop, the bean, and the
melon). Tendrils are tender, soft, curly, and flexible
organs whose circumnutation allows the plant to find a
support. When a tendril touches a support, such as a
trellis, its tissues develop in such a way that it starts to curl
and tighten up, eventually becoming robust and tough.
This curling provides the plant with an elastic springlike
connection to the support that enables it to resist high
winds and loads. Since neither the stem nor the support _ :
can rotate, the total twist in the tendril cannot change. A.
Therefore, as the tendril curls on itself, the coils of the
spiral are reversed at some point so that the tendril goes ’W\f j “"‘\J\r’VV)
from a left-nanded helix to a right-handed one, the tWoFIG 1. (a) Tendril perversion iBryonia dioica. lllustration
be'll'negnfi?iFZreart/eeO:sti)gnafZ?c?::tiglr%eaﬂt/v(iiegn?gﬁelzj.escribefOm Sachs' Text-book of Botanfl11]; (b) perversion in a
. At . . lephone cord. The effect is achieved by fully stretching out
It at Iength in his dellghtful little booK’ he Movements and and untwisting the cord and then 5|ow|y bringing the ends
Habits of Climbing Plant$3] based on an essay presentedtogether.
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The equivalent of tendril perversion is nowadays rec-The last equation is the constitutive relationship of linear
ognized to occur in problems ranging from the false-twistelasticity theory in which the parametér= 1/(1 + o)
technique in the textile industry [4] to the microscopic (whereo is the Poisson ratio) measures the ratio between
properties of biological fibers such as cotton [5] or thebending and twisting coefficients of the rod. The intrinsic
formation of bacterial macrofibers [6]. Spiral inversion curvature vectorx® corresponds to the configuration
can also be found in the macrophage scavenger proteimith the lowest elastic energy; namelff = 1 jéM .

a triple helix with reversed handedness [7], but its mos{x — x®)ds, such thatF = 0 when x = K(zu). The
familiar occurrence is to be found in modern telephonerrenet curvature is given by, = ,/K% + K%, whereas
cords. As a coiled telephone cord is first extended ang, contains information both on the twist of the filament
completely untwisted and then slowly released, a spirahnd the Frenet torsion. Here we consider only the effect
inversion will naturally appear, usually producing annoy-of a constant intrinsic curvature; that is, we sét) =

ing snarls. (K,0,0), whereK is the intrinsic curvature.

Here we give a qualitative and quantitative description |n order to understand and analyze spiral inversion, we
of the spiral inversion problem. Many questions readilystart with a simple stationary solution: a straight twistless
come to mind: What triggers the phenomenon? Whatilament under tensiofi; = ¢2 with intrinsic curvaturex .
is the associated dynamics? Can it be understood iAas the tension is slowly released, experience shows that
terms of an instability of certain solutions to the elasticthere is a critical tension for which the straight filament
filament equations? The theory of thin elastic rodsjoses its stability and bifurcates into new solutions. In
provides a natural framework to answer these questiongrder to capture this bifurcation and analyze its dynamics
We show that tendril perversion (and more generallywe use recently developed methods to study the linear and
the phenomenon of spiral inversion) can be understoogonlinear stability of stationary solutions [9,10].
through a dynamical analysis of the solutions to the The basic idea consists of expanding the local basis

Kirchhoff equations for thin elastic rods. d=d9 + edV + €2d® + ... in a small parametee
Consider first a simple space curveparametrized by  and requiring that to each order énthe basis/ = d(s, 1)
arc lengths, whose position may vary in time; i.ex,= js orthonormal. Since all the relevant geometric and

x(s, ). [In what follows, ()" and(") denote, respectively, physical quantities are expressed in the local basis, this
s and ¢ differentiation.] A local basis d; = di(s,t),  requirement allows us to expand all quantitiegin

i = 1,2,3 is defined byd; = x'(s,t), andd,, d> two unit o 0

vectors in the plane normal td; such that(di,d>,ds) di =d; + eaV X d;" + O(€?), i=1,23,

forms a right-handed orthonormal basis. There exist a _ .0 ,0) (1) (1) o)y 7140 2

twist vectork = «d; + k2d> + k3ds and aspin vector Byl + el i’ + @V Xy + 0(e),

o = wid; + wyd, + w3d; defining the space and time k= kO 1 (VY + O x oV 4 ()

evolution of the basis along the curve via thpin and ’
twist equations: o =&V + 0(e?).

/ .

di =« Xdi, di=eXxXd, =123 (1) Higher order terms can be generated along the same
Given k = k(s,t) and @ = w(s,?) the curve can be lines. The new variablea') describe the orientation of
obtained by first solving (1) and then integratidg If  the perturbed basis with respect to the unperturbed one.
d; is the normal vector to the curve then the local basiDefining the stationary configuration in terms of the (six-
reduces to the well-known Frenet frame. dimensional) vectoru® = (f© «©) a linear system

The Kirchhoff model of rod dynamics describes inex-for the first-order correctionw” = (f, a) can be
tensible rods whose length is much greater than the crosshtained by inserting (5) in the Kirchhoff equations and
sectional radius. Using these fundamental assumptiongollecting terms ire. In compact form, this system reads
all the physical quantities associated with the filament
are averaged over the cross sections and attached to the L (,u(o)) . ,u(l) =0, (6)
central axis. The total forcd” = F(s,r) and moment ) ) ) ) )
M = M(s, ) can then be expressed in terms of the locawhere L is a linear, second-order differential operator in
basis. The conservation of linear and angular momenturfi andz. , , .
leads to the Kirchhoff equations which, in scaled variables We consider here the stationary solutiop” =

and for a rod of circular cross section, are [8] (0.0,42,0,0,0). The solution [to (6)] can be expressed
Fl— @) as a sum of the fundamental solutions:
- 3 b

3) ,uﬁzl) = ¢ (Apxne™ + Afzxn*efms), @

(5)

M +dy X F=d; Xd| +dy, Xd,,

M= (k1 — k) + (k2 — k) where x, € C%, A, € C, and the growth rater is a
A i : 2 )b solution of the dispersion relatiors(c-, n) = 0, obtained
+ I'(k3 — k3 )d3. (4) by substituting (7) into (6):
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A= —n®n* + ¢>[T* + ¢?) — K?] — n*(n* + ¢>)[(n* + D @2T — K?) + 2]o?
—n2(m® + D> + DT + 4(n® + ¢H)]o* — 2(n® + 1)*0°. (8)

The critical value of the parameters at which new solutidnSension, parametrized by the Frenet curvature:
appear is obtained by solvin(0, n) = 0:

(K2 _ Fnz) — ¢21"‘ (9) k = (0,kp, TF) f= <0,f0’z—if0> > (11)

The analysis of this relationship already provides valuable h _ r h .
insight into the stability of the straight filament and dif- Where fo = —7r(kp — K) + I'kprp. The tension

2 _ ; 2 42 _
ferent cases can be considered: If the filament is infinited’ = f3setsthetorsionty = ¢*xp/[K + kp(I' — 1)].

then for a fixed intrinsic curvature there exists a criticalThe lowest energy states corre:;pond to the helizces with
value ¢y = K/~/T, such that for allé > ¢, the rod is  <Fs TF) Su%h that 2(I' — Dxp — 2K(I' = 2)xf —

: - 2krK? + T'tpK = 0. In the (kp, 77) plane, this family
(linearly) stable. Fogp < ¢qthe rod becomes linearly un- =<7 F& Fy1F '
stable. However, if the filament is finite of lengttr and ~ ©f OPtimal solutiongorms a closed curve passing through
the boundary conditions are chosen in such a way that thege, points(0,0) (straight line) and(X,0) (rings). Each
are not affected by the perturbation, then the first unstablB0INt On the curve represents an optimal helix for given

mode isn = 1/L, and the corresponding critical tension is > K- I'- The perverted filament connects asymptotically

#? = (L2K? — T)/LT. Obviously, ¢, < #o. As the two optimal helices [a right-handed orier > 0) to a

tension is further decreased, new modes become unstaﬂféct'hand?d OnéTf < 0_)]' ' : Lo
for the valuesp? = (L2K2 — k2T)/L?T. However, only The twist contained in a half filament for given intrinsic

a finite number of modes can be excited. Indeed ake- curvature and tension can be obtained by assuming that

creases the last possible excited maglg, corresponds to this half filament is well represented by an optimal helix;

— ; : then the total twist7w is given by the number of
¢ = 0, that is, the largest integer less or equakio/+/T . ) . S

The solution corresponding to theh mode can be he_hcalbrepea(;sb(holtfll_ng tEe Enl(.js’ the tOt"?‘I ht\’\ﬁt is the
easily obtained to second order: twist obtained by pulling the helix to a straight filament,

converting helical torsion to twist density):

sin2ns) + 2
X(5.1) = (s _ X,g%, v b
R L e (= )l A
g2 T2 = K21 — T)cos(ns) F
" 3¢4T2 — TK?T 2 + 4K+’ where «r is the curvature of the optimal solution with
sin(ns) given tensionp?.
—2X, (10) The energetic and stability analysis can now be used

together to give a complete picture of the mechanics and
where X, = Re(4,) and the amplituded is (within the  dynamics of tendril perversion. For a given intrinsic cur-
context of the linear analysis) still arbitrary. In order vature as the tension decreases (or equivalently for given
to relate the amplitude of the solution to the controltension and increasing intrinsic curvature), the straight
parameter, a (one-mode) nonlinear analysis has to bendril reaches a critical state where it loses stability.
performed [10]. The main idea is to expand the systenRight at the onset of instability, the filament is well de-
to third order ine and find the Fredholm condition for scribed by the solutions given by the stability analysis. As
the solution to remain bounded in space. This in turnthe tension is further decreased, the central piece is still
provides a differential equation for the amplituds, best described by the same nonlinear solutions whereas
and its time derivatives whose stationary states relate thiae long range solutions (the asymptotic states) are de-
amplitudeA, to the parameters of the system. Here, wescribed by the helical solutions obtained by energetic

obtain consideration. In Fig. 2, we show the closed curve of
) _ AT32($p — ¢,) (K2 + 3Tn?) (K2 — Tn?)l/2 optlm'al ;olut|ons in the(kr, 7r) .plane. A .perverted.
A tendril will connect two asymptotic states with opposite

n °
(12 = TD)K* + 202I2(1 = 2D)K? = 3n*13 hands (represented by two circles for a specific value of

So far, we have discussed the bifurcation of a straighthe tension) joined by the central piece given by the sta-
filament at the onset of instability. In order to completebility analysis. The perverted filament is a heteroclinic
the description of the problem, it is of interest to describeorbit in the curvature-torsion plane joining two asymp-
other possible solutions of the system and their elastitotic fixed points (the helices).
energy, namely, the helicoidal solutions that are found The perversion of tendrils in climbing plants provides
asymptotically in the perverted tendril. There is, in fact,a remarkable answer to an elementary mechanical ques-
a family of such solutions for every given value of the tion, namely: How does one build a twistless spring? As
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ant (the total twist) which is conserved in the symmetry
breaking bifurcation.
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