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Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants
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The helix hand reversal exhibited by the tendrils of climbing plants when attached to a support
investigated. Modeled as a thin elastic rod with intrinsic curvature, a linear and nonlinear stabil
analysis shows the problem to be a paradigm for curvature induced morphogenesis in which symm
breaking is constrained by a global invariant. [S0031-9007(98)05309-5]
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The interesting phenomenon of helix hand reversa
namely, the spontaneous switching of a helical structu
of one handedness to its mirror image, can be found
many different guises and was first calledperversionby
the 19th century topologist Listing, presumably after th
usage of the wordperversusto describe inverted seashel
specimens in choncology. Its occurrence in climbin
plants provides a beautiful mechanical system with whic
to study the problem of symmetry breaking constraine
by a global invariant; total twist in this case. Moreover
we show here that the key mechanical quantity drivin
the process is theintrinsic curvatureof the filament (i.e.,
the curvature of the filament in its lowest relaxed energ
state). It is important to note that many filamentary shap
in biology are driven by intrinsic twist (such as the forma
tion of bacterial macrofibers or DNA [1]), whereas ten
dril perversion provides an example of a different scenar
for the shape formation, namely, intrinsic curvature drive
morphogenesis. Indeed, the twist-to-writhe conversion a
gument, usually used to explain the coiling of filamen
through energy relaxation [2], does not apply here as t
filaments are twistless.

Among the many different mechanisms climbing plan
use to climb and grow along supports, the so-calle
“tendril bearers” or “clingers” constitute an importan
class (e.g., the grape vine, the hop, the bean, and
melon). Tendrils are tender, soft, curly, and flexibl
organs whose circumnutation allows the plant to find
support. When a tendril touches a support, such as
trellis, its tissues develop in such a way that it starts to cu
and tighten up, eventually becoming robust and toug
This curling provides the plant with an elastic springlik
connection to the support that enables it to resist hig
winds and loads. Since neither the stem nor the supp
can rotate, the total twist in the tendril cannot chang
Therefore, as the tendril curls on itself, the coils of th
spiral are reversed at some point so that the tendril go
from a left-handed helix to a right-handed one, the tw
being separated by a small segment (see Fig. 1).

Tendril perversion fascinated Darwin and he describe
it at length in his delightful little bookThe Movements and
Habits of Climbing Plants[3] based on an essay presente
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at the Linnean Society in 1865. Thanks to his stimulu
the subject attracted the interest of eminent 19th centu
biologists such as Gray, de Vries, and Sachs. Interestin
enough, Darwin himself appears to have been unaware
the earlier history of the topic; in particular, it was studie
by Léon in 1858, Dutrochet in 1844, and von Mohl an
de Candolle in 1827. In fact, de Candolle himse
attributes the first observation of the phenomenon
Ampère in the late 18th century. Furthermore a care
examination of the tendrils drawings (Tabula V) of Linn
in Philosophia Botannicaclearly shows a spiral inversion
and seems to indicate that Linné was well aware of t
phenomenon as early as 1751.

FIG. 1. (a) Tendril perversion inBryonia dioica. Illustration
from Sachs’ Text-book of Botany[11]; (b) perversion in a
telephone cord. The effect is achieved by fully stretching o
and untwisting the cord and then slowly bringing the end
together.
© 1998 The American Physical Society
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The equivalent of tendril perversion is nowadays re
ognized to occur in problems ranging from the false-twi
technique in the textile industry [4] to the microscopi
properties of biological fibers such as cotton [5] or th
formation of bacterial macrofibers [6]. Spiral inversio
can also be found in the macrophage scavenger prot
a triple helix with reversed handedness [7], but its mo
familiar occurrence is to be found in modern telephon
cords. As a coiled telephone cord is first extended a
completely untwisted and then slowly released, a spi
inversion will naturally appear, usually producing annoy
ing snarls.

Here we give a qualitative and quantitative descriptio
of the spiral inversion problem. Many questions readi
come to mind: What triggers the phenomenon? Wh
is the associated dynamics? Can it be understood
terms of an instability of certain solutions to the elast
filament equations? The theory of thin elastic rod
provides a natural framework to answer these questio
We show that tendril perversion (and more genera
the phenomenon of spiral inversion) can be understo
through a dynamical analysis of the solutions to th
Kirchhoff equations for thin elastic rods.

Consider first a simple space curvex, parametrized by
arc lengths, whose position may vary in time; i.e.,x ­
xss, td. [In what follows,s d0 andsÙd denote, respectively,
s and t differentiation.] A local basis di ­ diss, td,
i ­ 1, 2, 3 is defined byd3 ­ x0ss, td, andd1, d2 two unit
vectors in the plane normal tod3 such thatsd1, d2, d3d
forms a right-handed orthonormal basis. There exist
twist vectork ­ k1d1 1 k2d2 1 k3d3 and aspin vector
v ­ v1d1 1 v2d2 1 v3d3 defining the space and time
evolution of the basis along the curve via thespin and
twist equations:

d0
i ­ k 3 di , Ùdi ­ v 3 di , i ­ 1, 2, 3 . (1)

Given k ­ kss, td and v ­ vss, td the curve can be
obtained by first solving (1) and then integratingd3. If
d1 is the normal vector to the curve then the local bas
reduces to the well-known Frenet frame.

The Kirchhoff model of rod dynamics describes inex
tensible rods whose length is much greater than the cr
sectional radius. Using these fundamental assumptio
all the physical quantities associated with the filame
are averaged over the cross sections and attached to
central axis. The total forceF ­ Fss, td and moment
M ­ Mss, td can then be expressed in terms of the loc
basis. The conservation of linear and angular moment
leads to the Kirchhoff equations which, in scaled variabl
and for a rod of circular cross section, are [8]

F00 ­ d̈3 , (2)

M 0 1 d3 3 F ­ d1 3 d̈1 1 d2 3 d̈2 , (3)

M ­ sk1 2 k
sud
1 dd1 1 sk2 2 k

sud
2 dd2

1 Gsk3 2 k
sud
3 dd3 . (4)
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The last equation is the constitutive relationship of linea
elasticity theory in which the parameterG ­ 1ys1 1 sd
(wheres is the Poisson ratio) measures the ratio betwee
bending and twisting coefficients of the rod. The intrinsi
curvature vectorksud corresponds to the configuration
with the lowest elastic energy; namely,E ­ 1

2

RL
0 M ?

sk 2 ksudd ds, such thatE ­ 0 when k ­ ksud. The
Frenet curvature is given bykF ­

p
k2

1 1 k2
2 , whereas

k3 contains information both on the twist of the filamen
and the Frenet torsion. Here we consider only the effe
of a constant intrinsic curvature; that is, we setksud ­
sK , 0, 0d, whereK is the intrinsic curvature.

In order to understand and analyze spiral inversion, w
start with a simple stationary solution: a straight twistles
filament under tensionf3 ­ f2 with intrinsic curvatureK .
As the tension is slowly released, experience shows th
there is a critical tension for which the straight filamen
loses its stability and bifurcates into new solutions. In
order to capture this bifurcation and analyze its dynamic
we use recently developed methods to study the linear a
nonlinear stability of stationary solutions [9,10].

The basic idea consists of expanding the local bas
d ­ ds0d 1 eds1d 1 e2ds2d 1 . . . in a small parametere
and requiring that to each order ine, the basisd ­ dss, td
is orthonormal. Since all the relevant geometric an
physical quantities are expressed in the local basis, th
requirement allows us to expand all quantities ine:

di ­ d
s0d
i 1 eas1d 3 d

s0d
i 1 Ose2d, i ­ 1, 2, 3 ,

F ­ f
s0d
i d

s0d
i 1 ef f

s1d
i 1 sas1d 3 fs0ddigd

s0d
i 1 Ose2d ,

k ­ ks0d 1 sas1dd0 1 ks0d 3 as1d 1 Ose2d ,
(5)

v ­ Ùas1d 1 Ose2d .

Higher order terms can be generated along the sam
lines. The new variablesas1d describe the orientation of
the perturbed basis with respect to the unperturbed on
Defining the stationary configuration in terms of the (six
dimensional) vectorms0d ­ s fs0d, ks0dd a linear system
for the first-order correctionms1d ­ s fs1d, as1dd can be
obtained by inserting (5) in the Kirchhoff equations and
collecting terms ine. In compact form, this system reads

L sms0dd ? ms1d ­ 0 , (6)

whereL is a linear, second-order differential operator in
s andt.

We consider here the stationary solution:ms0d ­
s0, 0, f2, 0, 0, 0d. The solution [to (6)] can be expressed
as a sum of the fundamental solutions:

ms1d
n ­ estsAnxneins 1 Ap

nxp
ne2insd , (7)

where xn [ C6, An [ C, and the growth rates is a
solution of the dispersion relationsDss, nd ­ 0, obtained
by substituting (7) into (6):
1565
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D ­ 2n6sn2 1 f2d fGsn2 1 f2d 2 K2g 2 n4sn2 1 f2d fsn2 1 1d s2G 2 K2d 1 2gs2

2 n2sn2 1 1d fsn2 1 1dG 1 4sn2 1 f2dgf4 2 2sn2 1 1d2s6. (8)
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The critical value of the parameters at which new solutio
appear is obtained by solvingDs0, nd ­ 0:

sK2 2 Gn2d ­ f2G . (9)

The analysis of this relationship already provides valuab
insight into the stability of the straight filament and dif
ferent cases can be considered: If the filament is infini
then for a fixed intrinsic curvature there exists a critic
value f0 ­ Ky

p
G, such that for allf . f0, the rod is

(linearly) stable. Forf , f0 the rod becomes linearly un-
stable. However, if the filament is finite of length2pL and
the boundary conditions are chosen in such a way that th
are not affected by the perturbation, then the first unsta
mode isn ­ 1yL, and the corresponding critical tension i
f

2
1 ­ sL2K2 2 GdyL2G. Obviously,f1 , f0. As the

tension is further decreased, new modes become unst
for the valuesf2

k ­ sL2K2 2 k2GdyL2G. However, only
a finite number of modes can be excited. Indeed, asf de-
creases the last possible excited modekmax corresponds to
f ­ 0, that is, the largest integer less or equal toKLy

p
G.

The solution corresponding to thenth mode can be
easily obtained to second order:

xss, td ­

√
s 2 X2

n
sins2nsd 1 2ns

2n
,

22KX2
n

f2G2 2 K2s1 2 Gd cos2snsd
3f4G2 2 7K2Gf2 1 4K4

,

22Xn
sinsnsd

n

!
(10)

where Xn ­ ResAnd and the amplitudeA is (within the
context of the linear analysis) still arbitrary. In orde
to relate the amplitude of the solution to the contro
parameter, a (one-mode) nonlinear analysis has to
performed [10]. The main idea is to expand the syste
to third order in and find the Fredholm condition for
the solution to remain bounded in space. This in tu
provides a differential equation for the amplitudeAn

and its time derivatives whose stationary states relate
amplitudeAn to the parameters of the system. Here, w
obtain

A2
n ­

4G3y2sf 2 fnd sK2 1 3Gn2d sK2 2 Gn2d1y2

s12 2 7GdK4 1 2n2G2s1 2 2GdK2 2 3n4G3
.

So far, we have discussed the bifurcation of a straig
filament at the onset of instability. In order to complet
the description of the problem, it is of interest to describ
other possible solutions of the system and their elas
energy, namely, the helicoidal solutions that are foun
asymptotically in the perverted tendril. There is, in fac
a family of such solutions for every given value of th
s
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tension, parametrized by the Frenet curvature:

k ­ s0, kF , tFd f ­

0@0, f0,
tF

kF
f0

1A , (11)

where f0 ­ 2tFskF 2 Kd 1 GkFtF . The tension
f2 ­ f3 sets the torsion:t2

F ­ f2kFyfK 1 kFsG 2 1dg.
The lowest energy states correspond to the helices w
skF , tFd such that 2sG 2 1dk3

F 2 2KsG 2 2dk2
F 2

2kFK2 1 Gt
2
FK ­ 0. In the skF , tFd plane, this family

of optimal solutionsforms a closed curve passing throug
the pointss0, 0d (straight line) andsK, 0d (rings). Each
point on the curve represents an optimal helix for giv
f, K, G. The perverted filament connects asymptotica
two optimal helices [a right-handed onestF . 0d to a
left-handed onestF , 0d].

The twist contained in a half filament for given intrinsi
curvature and tension can be obtained by assuming
this half filament is well represented by an optimal heli
then the total twistTw is given by the number of
helical repeats (holding the ends, the total twist is t
twist obtained by pulling the helix to a straight filamen
converting helical torsion to twist density):

Tw2 ­
L2

4

0@k2
F 1

f2kF

K 1 kFsG 2 1d

1A , (12)

where kF is the curvature of the optimal solution with
given tensionf2.

The energetic and stability analysis can now be us
together to give a complete picture of the mechanics a
dynamics of tendril perversion. For a given intrinsic cu
vature as the tension decreases (or equivalently for gi
tension and increasing intrinsic curvature), the straig
tendril reaches a critical state where it loses stabili
Right at the onset of instability, the filament is well de
scribed by the solutions given by the stability analysis.
the tension is further decreased, the central piece is
best described by the same nonlinear solutions wher
the long range solutions (the asymptotic states) are
scribed by the helical solutions obtained by energe
consideration. In Fig. 2, we show the closed curve
optimal solutions in theskF , tFd plane. A perverted
tendril will connect two asymptotic states with opposi
hands (represented by two circles for a specific value
the tension) joined by the central piece given by the s
bility analysis. The perverted filament is a heteroclin
orbit in the curvature-torsion plane joining two asym
totic fixed points (the helices).

The perversion of tendrils in climbing plants provide
a remarkable answer to an elementary mechanical qu
tion, namely: How does one build a twistless spring?
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FIG. 2. (A) Sketch of a helix hand reversal. (B) The optimal
solution curves in thetF 2 kF plane together with the two
optimal helices (circles) obtained forK ­ 1y4, G ­ 3y4,
n ­ 1y8, and f ­ f2 ø 0.286. The inside curve is the one
obtained by the nonlinear analysis for the central piece.

shown here, the twistless spring can be simply crea
by a change in intrinsic curvature. The structure that r
sults is a coupling of two (or more) helical springs wit
opposite handedness. The modeling of this phenome
through Kirchhoff’s theory of thin rods provides quant
tative results on the critical parameters involved in th
process, as well as a complete qualitative picture of t
mechanism involved. It also highlights an intriguing sc
nario for morphogenesis where local curvature, rather th
twist, determines the final structure. The remarkable fe
ture of this mechanism is the existence of a global inva
ted
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ant (the total twist) which is conserved in the symmetr
breaking bifurcation.
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